Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Phys Chem Chem Phys ; 24(41): 25391-25402, 2022 Oct 27.
Article in English | MEDLINE | ID: covidwho-2077132

ABSTRACT

Here, we have carried out a proof-of-concept molecular dynamics (MD) simulation with adaptive tempering in a membrane mimetic environment to study the folding of single-pass membrane peptides. We tested the influenza A M2 viroporin, influenza B M2 viroporin, and protein E from coronaviruses MERS-Cov-2 and SARS-CoV-2 peptides with known experimental secondary structures in membrane bilayers. The two influenza-derived peptides are significantly different in the peptide sequence and secondary structure and more polar than the two coronavirus-derived peptides. Through a total of more than 50 µs of simulation time that could be accomplished in trifluoroethanol (TFE), as a membrane model, we characterized comparatively the folding behavior, helical stability, and helical propensity of these transmembrane peptides that match perfectly their experimental secondary structures, and we identified common motifs that reflect their quaternary organization and known (or not) biochemical function. We showed that BM2 is organized into two structurally distinct parts: a significantly more stable N-terminal half, and a fast-converting C-terminal half that continuously folds and unfolds between α-helical structures and non-canonical structures, which are mostly turns. In AM2, both the N-terminal half and C-terminal half are very flexible. In contrast, the two coronavirus-derived transmembrane peptides are much more stable and fast helix-formers when compared with the influenza ones. In particular, the SARS-derived peptide E appears to be the fastest and most stable helix-former of all the four viral peptides studied, with a helical structure that persists almost without disruption for the whole of its 10 µs simulation. By comparing the results with experimental observations, we benchmarked TFE in studying the conformation of membrane and hydrophobic peptides. This work provided accurate results suggesting a methodology to run long MD simulations and predict structural properties of biologically important membrane peptides.


Subject(s)
COVID-19 , Influenza, Human , Humans , Molecular Dynamics Simulation , Peptides/chemistry , Polytetrafluoroethylene , Protein Folding , Protein Structure, Secondary , SARS-CoV-2 , Solvents , Trifluoroethanol/chemistry , Viroporin Proteins , Influenzavirus B , Middle East Respiratory Syndrome Coronavirus
2.
Commun Biol ; 4(1): 1347, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1852515

ABSTRACT

The dire need for COVID-19 treatments has inspired strategies of repurposing approved drugs. Amantadine has been suggested as a candidate, and cellular as well as clinical studies have indicated beneficial effects of this drug. We demonstrate that amantadine and hexamethylene-amiloride (HMA), but not rimantadine, block the ion channel activity of Protein E from SARS-CoV-2, a conserved viroporin among coronaviruses. These findings agree with their binding to Protein E as evaluated by solution NMR and molecular dynamics simulations. Moreover, we identify two novel viroporins of SARS-CoV-2; ORF7b and ORF10, by showing ion channel activity in a X. laevis oocyte expression system. Notably, amantadine also blocks the ion channel activity of ORF10, thereby providing two ion channel targets in SARS-CoV-2 for amantadine treatment in COVID-19 patients. A screen of known viroporin inhibitors on Protein E, ORF7b, ORF10 and Protein 3a from SARS-CoV-2 revealed inhibition of Protein E and ORF7b by emodin and xanthene, the latter also blocking Protein 3a. This illustrates a general potential of well-known ion channel blockers against SARS-CoV-2 and specifically a dual molecular basis for the promising effects of amantadine in COVID-19 treatment. We therefore propose amantadine as a novel, cheap, readily available and effective way to treat COVID-19.


Subject(s)
Amantadine/pharmacology , Amiloride/analogs & derivatives , Antiviral Agents/pharmacology , Rimantadine/pharmacology , SARS-CoV-2/drug effects , Viral Proteins/physiology , Amiloride/pharmacology , Ion Channels/physiology
4.
ACS Cent Sci ; 7(7): 1245-1260, 2021 Jul 28.
Article in English | MEDLINE | ID: covidwho-1387139

ABSTRACT

The papain-like protease (PLpro) of SARS-CoV-2 is a validated antiviral drug target. Through a fluorescence resonance energy transfer-based high-throughput screening and subsequent lead optimization, we identified several PLpro inhibitors including Jun9-72-2 and Jun9-75-4 with improved enzymatic inhibition and antiviral activity compared to GRL0617, which was reported as a SARS-CoV PLpro inhibitor. Significantly, we developed a cell-based FlipGFP assay that can be applied to predict the cellular antiviral activity of PLpro inhibitors in the BSL-2 setting. X-ray crystal structure of PLpro in complex with GRL0617 showed that binding of GRL0617 to SARS-CoV-2 induced a conformational change in the BL2 loop to a more closed conformation. Molecular dynamics simulations showed that Jun9-72-2 and Jun9-75-4 engaged in more extensive interactions than GRL0617. Overall, the PLpro inhibitors identified in this study represent promising candidates for further development as SARS-CoV-2 antivirals, and the FlipGFP-PLpro assay is a suitable surrogate for screening PLpro inhibitors in the BSL-2 setting.

5.
Nat Struct Mol Biol ; 27(12): 1202-1208, 2020 12.
Article in English | MEDLINE | ID: covidwho-1387444

ABSTRACT

An essential protein of the SARS-CoV-2 virus, the envelope protein E, forms a homopentameric cation channel that is important for virus pathogenicity. Here we report a 2.1-Å structure and the drug-binding site of E's transmembrane domain (ETM), determined using solid-state NMR spectroscopy. In lipid bilayers that mimic the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) membrane, ETM forms a five-helix bundle surrounding a narrow pore. The protein deviates from the ideal α-helical geometry due to three phenylalanine residues, which stack within each helix and between helices. Together with valine and leucine interdigitation, these cause a dehydrated pore compared with the viroporins of influenza viruses and HIV. Hexamethylene amiloride binds the polar amino-terminal lumen, whereas acidic pH affects the carboxy-terminal conformation. Thus, the N- and C-terminal halves of this bipartite channel may interact with other viral and host proteins semi-independently. The structure sets the stage for designing E inhibitors as antiviral drugs.


Subject(s)
Coronavirus Envelope Proteins/chemistry , Lipid Bilayers/chemistry , SARS-CoV-2/chemistry , Amantadine/chemistry , Amiloride/analogs & derivatives , Amiloride/chemistry , Antiviral Agents/chemistry , Coronavirus Envelope Proteins/genetics , Dimyristoylphosphatidylcholine/chemistry , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Models, Molecular , Phenylalanine/chemistry , Phospholipids/chemistry , Protein Conformation , Protein Domains , SARS-CoV-2/genetics
6.
ACS Chem Biol ; 15(9): 2331-2337, 2020 09 18.
Article in English | MEDLINE | ID: covidwho-1387140

ABSTRACT

We report on using the synthetic aminoadamantane-CH2-aryl derivatives 1-6 as sensitive probes for blocking M2 S31N and influenza A virus (IAV) M2 wild-type (WT) channels as well as virus replication in cell culture. The binding kinetics measured using electrophysiology (EP) for M2 S31N channel are very dependent on the length between the adamantane moiety and the first ring of the aryl headgroup realized in 2 and 3 and the girth and length of the adamantane adduct realized in 4 and 5. Study of 1-6 shows that, according to molecular dynamics (MD) simulations and molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations, all bind in the M2 S31N channel with the adamantyl group positioned between V27 and G34 and the aryl group projecting out of the channel with the phenyl (or isoxazole in 6) embedded in the V27 cluster. In this outward binding configuration, an elongation of the ligand by only one methylene in rimantadine 2 or using diamantane or triamantane instead of adamantane in 4 and 5, respectively, causes incomplete entry and facilitates exit, abolishing effective block compared to the amantadine derivatives 1 and 6. In the active M2 S31N blockers 1 and 6, the phenyl and isoxazolyl head groups achieve a deeper binding position and high kon/low koff and high kon/high koff rate constants, compared to inactive 2-5, which have much lower kon and higher koff. Compounds 1-5 block the M2 WT channel by binding in the longer area from V27-H37, in the inward orientation, with high kon and low koff rate constants. Infection of cell cultures by influenza virus containing M2 WT or M2 S31N is inhibited by 1-5 or 1-4 and 6, respectively. While 1 and 6 block infection through the M2 block mechanism in the S31N variant, 2-4 may block M2 S31N virus replication in cell culture through the lysosomotropic effect, just as chloroquine is thought to inhibit SARS-CoV-2 infection.


Subject(s)
Adamantane/pharmacology , Influenza A virus/drug effects , Influenza, Human/prevention & control , Ion Channels/antagonists & inhibitors , Molecular Probes/chemistry , Viral Matrix Proteins/antagonists & inhibitors , Adamantane/analogs & derivatives , Adamantane/chemistry , Adamantane/metabolism , Betacoronavirus/drug effects , Binding Sites , COVID-19 , Cells, Cultured , Chloroquine/pharmacology , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Genetic Variation , Humans , Influenza A virus/chemistry , Influenza A virus/genetics , Influenza, Human/drug therapy , Kinetics , Molecular Probes/metabolism , Pandemics/prevention & control , Pneumonia, Viral/drug therapy , Pneumonia, Viral/prevention & control , Protein Binding , SARS-CoV-2 , Structure-Activity Relationship , Virus Replication/drug effects
7.
Sci Adv ; 6(50)2020 12.
Article in English | MEDLINE | ID: covidwho-969082

ABSTRACT

The main protease (Mpro) of SARS-CoV-2 is a key antiviral drug target. While most Mpro inhibitors have a γ-lactam glutamine surrogate at the P1 position, we recently found that several Mpro inhibitors have hydrophobic moieties at the P1 site, including calpain inhibitors II and XII, which are also active against human cathepsin L, a host protease that is important for viral entry. In this study, we solved x-ray crystal structures of Mpro in complex with calpain inhibitors II and XII and three analogs of GC-376 The structure of Mpro with calpain inhibitor II confirmed that the S1 pocket can accommodate a hydrophobic methionine side chain, challenging the idea that a hydrophilic residue is necessary at this position. The structure of calpain inhibitor XII revealed an unexpected, inverted binding pose. Together, the biochemical, computational, structural, and cellular data presented herein provide new directions for the development of dual inhibitors as SARS-CoV-2 antivirals.


Subject(s)
Cathepsin L/chemistry , Coronavirus 3C Proteases/chemistry , Drug Design , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Animals , Caco-2 Cells , Cathepsin L/antagonists & inhibitors , Cathepsin L/metabolism , Cell Line , Cell Line, Tumor , Chlorocebus aethiops , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Crystallography, X-Ray , Dogs , Humans , Kinetics , Madin Darby Canine Kidney Cells , Models, Chemical , Molecular Structure , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Protein Domains , Vero Cells
8.
ACS Pharmacol Transl Sci ; 3(6): 1265-1277, 2020 Dec 11.
Article in English | MEDLINE | ID: covidwho-840621

ABSTRACT

Among the drug targets being investigated for SARS-CoV-2, the viral main protease (Mpro) is one of the most extensively studied. Mpro is a cysteine protease that hydrolyzes the viral polyprotein at more than 11 sites. It is highly conserved and has a unique substrate preference for glutamine in the P1 position. Therefore, Mpro inhibitors are expected to have broad-spectrum antiviral activity and a high selectivity index. Structurally diverse compounds have been reported as Mpro inhibitors. In this study, we investigated the mechanism of action of six previously reported Mpro inhibitors, ebselen, disulfiram, tideglusib, carmofur, shikonin, and PX-12, using a consortium of techniques including FRET-based enzymatic assay, thermal shift assay, native mass spectrometry, cellular antiviral assays, and molecular dynamics simulations. Collectively, the results showed that the inhibition of Mpro by these six compounds is nonspecific and that the inhibition is abolished or greatly reduced with the addition of reducing reagent 1,4-dithiothreitol (DTT). Without DTT, these six compounds inhibit not only Mpro but also a panel of viral cysteine proteases including SARS-CoV-2 papain-like protease and 2Apro and 3Cpro from enterovirus A71 (EV-A71) and EV-D68. However, none of the compounds inhibits the viral replication of EV-A71 or EV-D68, suggesting that the enzymatic inhibition potency IC50 values obtained in the absence of DTT cannot be used to faithfully predict their cellular antiviral activity. Overall, we provide compelling evidence suggesting that these six compounds are nonspecific SARS-CoV-2 Mpro inhibitors and urge the scientific community to be stringent with hit validation.

9.
Res Sq ; 2020 Sep 24.
Article in English | MEDLINE | ID: covidwho-809098

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing COVID-19 pandemic. Successful development of vaccines and antivirals against SARS-CoV-2 requires a comprehensive understanding of the essential proteins of the virus. The envelope (E) protein of SARS-CoV-2 assembles into a cation-selective channel that mediates virus budding, release, and host inflammation response. E blockage reduces virus pathogenicity while E deletion attenuates the virus. Here we report the 2.4 Å structure and drug-binding site of E's transmembrane (TM) domain, determined using solid-state nuclear magnetic resonance (NMR) spectroscopy. In lipid bilayers that mimic the endoplasmic reticulum Golgi intermediate compartment (ERGIC) membrane, ETM forms a five-helix bundle surrounding a narrow central pore. The middle of the TM segment is distorted from the ideal a-helical geometry due to three regularly spaced phenylalanine residues, which stack within each helix and between neighboring helices. These aromatic interactions, together with interhelical Val and Leu interdigitation, cause a dehydrated pore compared to the viroporins of influenza and HIV viruses. Hexamethylene amiloride and amantadine bind shallowly to polar residues at the N-terminal lumen, while acidic pH affects the C-terminal conformation. These results indicate that SARS-CoV-2 E forms a structurally robust but bipartite channel whose N- and C-terminal halves can interact with drugs, ions and other viral and host proteins semi-independently. This structure establishes the atomic basis for designing E inhibitors as antiviral drugs against SARS-CoV-2.

10.
bioRxiv ; 2020 Sep 16.
Article in English | MEDLINE | ID: covidwho-807738

ABSTRACT

There is an urgent need for vaccines and antiviral drugs to combat the COVID-19 pandemic. Encouraging progress has been made in developing antivirals targeting SARS-CoV-2, the etiological agent of COVID-19. Among the drug targets being investigated, the viral main protease (M pro ) is one of the most extensively studied drug targets. M pro is a cysteine protease that hydrolyzes the viral polyprotein at more than 11 sites and it is highly conserved among coronaviruses. In addition, M pro has a unique substrate preference for glutamine in the P1 position. Taken together, it appears that M pro inhibitors can achieve both broad-spectrum antiviral activity and a high selectivity index. Structurally diverse compounds have been reported as M pro inhibitors, with several of which also showed antiviral activity in cell culture. In this study, we investigated the mechanism of action of six previously reported M pro inhibitors, ebselen, disulfiram, tideglusib, carmofur, shikonin, and PX-12 using a consortium of techniques including FRET-based enzymatic assay, thermal shift assay, native mass spectrometry, cellular antiviral assays, and molecular dynamics simulations. Collectively, the results showed that the inhibition of M pro by these six compounds is non-specific and the inhibition is abolished or greatly reduced with the addition of reducing reagent DTT. In the absence of DTT, these six compounds not only inhibit M pro , but also a panel of viral cysteine proteases including SARS-CoV-2 papain-like protease, the 2A pro and 3C pro from enterovirus A71 (EV-A71) and EV-D68. However, none of the compounds inhibits the viral replication of EV-A71 or EV-D68, suggesting that the enzymatic inhibition potency IC 50 values obtained in the absence of DTT cannot be used to faithfully predict their cellular antiviral activity. Overall, we provide compelling evidence suggesting that ebselen, disulfiram, tideglusib, carmofur, shikonin, and PX-12 are non-specific SARS-CoV-2 M pro inhibitors, and urge the scientific community to be stringent with hit validation.

SELECTION OF CITATIONS
SEARCH DETAIL